Welcome Guest | Sign in | Register

Home > Arithmetic Aptitude > Simplification > Questions and Answers

01. Find the least number which when added to or subtracted from 1850 makes it a perfect square.
A. 2 B. 1
C. 3 D. 4

Answer and Explanation

Answer: 1

Explanation:
1850 is (1849 + 1)...i.e. (43)2 + 1and also (1936 - 86) i.e (44)2 – 86.So, if 1 is subtracted from 1850 or if 86 is added to 1850, we get perfect squares. SO, the least number to be added or subtracted to get a perfect square is1.

Report Errors

Name:

Loading...

VView Answer | RReport | DDiscuss in Forum
02. Find the least number, which must be added to 36520 to make it exactly divisible by 187
A. 159 B. 132
C. 131 D. 165

Answer and Explanation

Answer: 132

Explanation:
1 and 8 are the first two digits of the divisor and 3 and 6, those of the dividend.
Hence we try 200 * 187 = 37400
Subtracting 374 twice from this, we get 36652.
We confirm that (36652 - 36520)
Also 36652 – 36520 = 132 < 187
Hence, the least number that should be added is 132

Report Errors

Name:

Loading...

VView Answer | RReport | DDiscuss in Forum
03. By what number should be 21600 be multiplied to make it a perfect cube?
A. 60 B. 54
C. 56 D. 58

Answer and Explanation

Answer: 60

Explanation:
21600 = 23 * 22 * 33 * 52
Thus 21600 should be multiplied by 2*5 to make it a perfect cube.
∴ the perfect cube number 216000
Cube root of 216000 = 2*2*3*5 = 60

Report Errors

Name:

Loading...

VView Answer | RReport | DDiscuss in Forum
04. What is the cost of erecting a fence round a square field of area 1000000 square meters at the rate of Rs. 10 per meter?
A. Rs 39000 B. Rs 40000
C. Rs 42000 D. Rs 45000

Answer and Explanation

Answer: Rs 40000

Explanation:
Area of the field = 1000000 sq.m
∴Side of the field = √1000000 = 1000 m
∴Perimeter of the field = 4 * 1000 = 4000 m
∴Cost = 100 * 4000 = Rs 40000

Report Errors

Name:

Loading...

VView Answer | RReport | DDiscuss in Forum
05. Find a2 + b2 = (a+b) = 25 and ab = 150. Also find a3+b3
Find x + 1/x
A. 4125 B. 2375
C. 4375 D. 4374

Answer and Explanation

Answer: 4375

Explanation:
a2 + b2 = (a + b)2 – 2ab
∴a2 + b2 = 625 – 300 = 325
a3 + b3 = (a + b)3 – 3ab(a + b)
∴a3 + b3 = 15625 – 450(25)
a3 + b3 = 15625 – 11250 = 4375

Report Errors

Name:

Loading...

VView Answer | RReport | DDiscuss in Forum
06. Find the least number that is a perfect square and which is also divisible by 16 , 18 and 45.
A. 3599 B. 3600
C. 3900 D. 3100

Answer and Explanation

Answer: 3600

Explanation:
LCM of 16 , 18 and 45 = 720
On multiplying 720 by 5,
We get the required number as 720 * 5 = 3600

Report Errors

Name:

Loading...

VView Answer | RReport | DDiscuss in Forum
07. A number is divided by 18 gives a remainder 13. What is the remainder obtained by dividing the same number with 9 ?
A. 3 B. 5
C. 6 D. 4

Answer and Explanation

Answer: 4

Explanation:
If x is the required number
X – 13 is divisible by 18.
∴ x – 13 is also divisible by 9
Dividing the remainder viz 13 by 9, we get the remainder 4.
Hence, the remainder when x is divided by 9 is 4

Report Errors

Name:

Loading...

VView Answer | RReport | DDiscuss in Forum
08. if (x2/yz) + (y2/xz) + (z2/xy) = 3. Find x + y + z.
A. 0 B. 1
C. 2 D. 3

Answer and Explanation

Answer: 0

Explanation:
Multiplying both sides with by xyz,we get
X + y+z = 3xyz
=> X3 + y3 + z3 - 3xyz = 0
=> ∴ (x + y + z)(x2+y2+z2 – xy – yz - xz) = 0

Report Errors

Name:

Loading...

VView Answer | RReport | DDiscuss in Forum
09. A house wife, with a given amount can buy either 10 apples or 15 oranges or 2 watermelons. Find the maximum number of oranges which she can buy with six times the initial amount such that she gets each of the three varieties of fruits.
A. 75 B. 81
C. 60 D. 72
E. Cannot be determined

Answer and Explanation

Answer: 81

Explanation:
Let the initial amount be a
Cost of 1 apple = a/10
Cost of 1 orange = a/15
Cost of 1 watermelon = a/2
As all the 3 types of fruits are bought, the minimum shall be 1
As oranges are the max, others are one each.
Amount spent = 6a
Hence the number of oranges
= [6a-{a/10 + a/2}] / a/15
= [6a – 6a/10] / a/15 = (54a/10) / (a/15) = 81

Report Errors

Name:

Loading...

VView Answer | RReport | DDiscuss in Forum
10. Runs scored by bhangar in a match are 10 more than the balls faced by karthik. The number of balls faced by bhangar is 5 more than the number of runs scored by karthik. Together they have scored 50 runs and bhangar has faced 15 balls less than karthik. What is the number of runs scored by bhangar?
A. 30 B. 20
C. 40 D. 50
E. 35

Answer and Explanation

Answer: 40

Explanation:
Runs by bhangar – (x+10) and balls (y+5)
Runs by karthik – y and balls x
X+y+10 = 50
X+y = 40  (1)
Y+5=x-15
X-y = 20 (2)
X= 30
Runs scored by bhangar = 30 +10 = 40

Report Errors

Name:

Loading...

VView Answer | RReport | DDiscuss in Forum



Partner Sites
LucentBlackBoard.com                  SoftLucent.com                  LucentJobs.com
All rights reserved © 2012-2015 SoftLucent.